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We calculate numerically the periodic orbits of pseudointegrable systems of low genus numbersg that arise
from rectangular systems with one or two salient corners. From the periodic orbits, we calculate the spectral
rigidity D3sLd using semiclassical quantum mechanics withL reaching up to quite large values. We find that the
diagonal approximation is applicable when averaging over a suitable energy interval. Comparing systems of
various shapes, we find that our results agree well withD3 calculated directly from the eigenvalues by spectral
statistics. Therefore, additional terms such as, e.g., diffraction terms seem to be small in the case of the systems
investigated in this work. By reducing the size of the corners, the spectral statistics of our pseudointegrable
systems approaches that of an integrable system, whereas very large differences between integrable and
pseudointegrable systems occur when the salient corners are large. Both types of behavior can be well under-
stood by the properties of the periodic orbits in the system.
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I. INTRODUCTION

The motion of a classical particle in a billiard system can
show regular, chaotic, or intermediate behavior, depending
on the billiard geometry. In a chaotic billiard, the motion is
ergodically extended over the whole energy surface in phase
space, and two particles whose trajectories are very close at
the beginning diverge exponentially from each other. If the
system is integrable, on the other hand, the motion of the
billiard particle is restricted to a two-dimensional torus in
phase space and neighboring trajectories diverge only lin-
early from each other. Examples for chaotic billiards are,
e.g., the Sinai or the stadium billiard, whereas rectangular or
circular billiards are integrable. Between these two limiting
cases, there are several classes of intermediate systems.

A potential well of the same geometry as the correspond-
ing classical billiard—a quantum billiard—reflects this regu-
lar, chaotic, or intermediate behavior in the statistics and the
dynamics of its eigenvalues. The statistics of the eigenvalues
investigates the static correlations of the eigenvalues and the
distribution of the distances between consecutive values[1].
It can be determined directly by calculating first the eigen-
values and then their distribution and the correlations be-
tween them. It can also be determined at least approximately
by calculating the periodic orbits of the system and applying
semiclassical quantum mechanics.

In this paper, we want to use the periodic orbit theory. We
focus on pseudointegrable systems[2–4], which are an inter-
esting example of an intermediate class. As in integrable sys-
tems, the motion of a classical particle in a pseudointegrable
system is restricted to a two-dimensional surface in phase
space. However, these surfaces do not have the shapes of tori
but are more complicated objects with more than one hole
(“multihandled spheres”). Examples for pseudointegrable
systems are polygons with only rational anglesnip /mi, with
ni ,mi PN and at least oneni .1. They are classified by their
genus number

g = 1 +
M

2 o
i=1

J
ni − 1

mi
, s1d

which is equal to the number of holes in the multihandled
sphere in phase space. Here,J is the number of angles andM
is the least common multiple of themi. The reason why those
systems are not completely integrable is their property of
beam splitting. At some points in their geometry, neighboring
trajectories of particles can be split into two opposite direc-
tions. Figure 1 shows examples of pseudointegrable billiards
with genus numbersg=2 and 3. The beam splitting property
is demonstrated in Fig. 1(a) at one of the salient corners.

The first possibility to calculate the spectral statistics
starts with the eigenvalues. Here, one first looks at the dis-
tribution Pssd of the normalized distancessi =s«i+1

−«id / ksl , ksl=1, between two consecutive energy levels«i+1

FIG. 1. Shapes of the pseudointegrable systems considered in
this paper:(a) the one-step systemsX1,Y1;X2,Y2d with genus num-
ber g=2 and (b) the two-step systemsX1,Y1;X2,Y2;X3,Y3d with
g=3. In (a), the beam splitting of two initially neighboring trajec-
tories at a salient corner is demonstrated and in(b) trajectories of
three ”neutral” orbits(between two parallel walls) are indicated by
arrows. For the lengthsXi ,Yi considered in this paper, see Table I.
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and «i with the mean distanceksl, which has two limiting
cases. When the systems are integrable,Pssd follows the
Poisson distribution, whereas thesi of chaotic systems are
Wigner-distributed. The distributionPssd of pseudointe-
grable systems has been found to be intermediate between
both [5–10] and it is assumed that with increasingg they
come closer to the behavior of chaotic systems. However, it
is not yet clear in which way other system details interfere.

As a measure for the correlations between the eigenval-
ues, we consider the spectral rigidityD3sLd [11], which de-
scribes the correlations in a normalized energy interval of
lengthL. L gives the approximate number of energy levels in
the considered interval and will in the following be called the
argument ofD3. We start from the integrated density of states
Ns«d=on=1

N Us«−«nd of the normalized(“unfolded”) energy
levels, which is a staircase and can be approximated by a
straight line.D3sLd is defined as the least-squares deviation,

D3sLd =Kminr1,r2E
E0−L/2

E0+L/2

fNs«d − r1 − r2«g2d«L , s2d

where minr1,r2
means that the parametersr1 andr2 are chosen

such that the liner1+r2« is the best fit ofNs«d. The average
k l is an energy average, carried out over many different val-
ues ofE0 in an intervalDE. DE should not be confused with
the argumentL, which gives the length of the considered
energy interval. The limiting curves for not too largeL are
D3sLd=L /15 for integrable systems andD3sLd=lnsLd /p2

−0.07/p2+OsL−1d for the ensemble of Gaussian orthogonal
matrices(GOE) [1,12], which serves as a generally accepted
good limit for chaotic systems. For pseudointegrable bil-
liards,D3sLd has been found intermediate between both(see
above).

A second possibility to calculateD3sLd is given by the
periodic orbit theory. In pseudointegrable systems, all peri-
odic orbits form families of equal lengths and the starting
point of an orbit can always be shifted to at least one direc-
tion along the boundary without leaving the family. The sim-
plest and shortest orbit families are the “neutral orbits”[13]
that bounce between two parallel walls. Using semiclassical
quantum mechanics, setting"=2m=1, and neglecting addi-
tional contributions coming, e.g., from diffractive orbits,
D3sLd under Neumann boundary conditions is given by
[12,14–16]

D3sLd =KÎE0

4p3o
i,j

aiaj

s,i, jd3/2cosfÎE0s,i − , jdgHijL . s3d

The double sum is carried out over all orbit families(includ-
ing repetitions, but only in the forward direction) of lengths
,i and , j , ai and aj are the areas in phase space that are
occupied by the respecting orbit families, and the function
Hij =Fsyi −yjd−FsyidFsyjd−3F8syidF8syjd, where Fsyd
=ssinyd /y and primes denote differentiation. The argument
L enters viayi =sL,id / s4ÎE0kdld with the mean level spacing
1/kdl=4p /A and the system areaA. As in Eq.(2), the aver-
agek l in Eq. (3) is carried out over different energiesE0 in
an energy interval of widthDE.

In this paper, we basically want to use Eq.(3) to calculate
D3sLd and see in which way the different system details apart
from the genus numberg influence its behavior. It can be
seen by Eq.(3) that the number of orbits in the different
length intervalsf, ,,+D,g as well as the corresponding areas
as,d are the important quantities to investigate this question.
We therefore carefully calculate these quantities for systems
with different lengths and widthssXi ,Yid of the different seg-
ments(Fig. 1) and see how the behavior ofD3 changes by
varying the systems.

The behavior for largeL is determined by the short orbits,
and we will sometimes use the neutral orbits for crude ap-
proximations. By choosing the segmentsX2→X1,Y2→Y2,
the orbits approach the ones of a rectangular system, which
is integrable. For large differences betweenX1 and X2 and
betweenY1 andY2, on the other hand, the orbit families can
become very different from those of the rectangle.

The paper is organized as follows. In Sec. II, we explain
how the lengths and areas of the periodic orbits are calcu-
lated and show the results. In Sec. III, we discuss the appli-
cability of the diagonal approximation, where only terms of
,i =, j are considered in Eq.(3). In Sec. IV, we finally show
the periodic orbit results forD3sLd for many different sys-
tems and compare them to the eigenvalue statistics. Some of
the considered systems are very close to integrability, while
other systems possess very pronounced salient corners and
we show howD3sLd is influenced by these system details.
Finally, in the conclusion Sec. V, the influence of neglected
terms such as, e.g., the diffraction terms and possible devia-
tions between the eigenvalue statistics and the periodic orbit
results are discussed.

II. CALCULATION OF THE PERIODIC ORBITS

It has been shown in[14,15] that for large,, the prolif-
eration rateNs,d, i.e., the number of orbits with lengths
smaller than,, grows quadratically with,,

Ns,d = pb0,2/kas,dl, s4d

wherekas,dl=oi,,i,,ai /oi,,i,,1 is the average area in phase
space, occupied by the orbits with lengths smaller than,,
andb0 is a constant, depending slightly on the details of the
system,

b0 < s1/2pdo
i

`

ds, − ,idai/,i s5d

(the sum going over all periodic orbits including repetitions).
It has been found thatb0= 1

4 for integrable systems and
slightly larger for pseudointegrable systems, whereaskas,dl
<4A in integrable systems and considerably smaller for
pseudointegrable systems[15].

We have calculated the periodic orbits of our pseudointe-
grable systems by two different methods. The first method
uses the fact that one member of each orbit family must
either start at a salient corner or pass close to it. Therefore,
we start at the salient corners and vary the reflection anglew
between the trajectory and the billiard wall in small stepsDw
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until the orbit nearly closes. Finally, we use an iteration
method[17] to find the exact reflection anglew. The second
method calculatesw and the lengths,w of all hypothetical
orbits by [18] tanw=oiniYi /o jmjXj ,,w=2fsoiniYid2

+so jmjXjd2g1/2, where ni and mj are positive integers and
Xi ,Yj are the segment lengths as shown in Fig. 1. In pseudo-
integrable systems, due to the shielding role of the corners,
not all hypothetical orbits really occur in each system. There-
fore, we have to check which trajectories actually return to
their starting point within the correct length,w of the trajec-
tory. Both methods basically lead to the same results. The
agreement, e.g., for the one-step system is larger then 97%
for the orbits, being reflected at the boundaries up to 50
times. Going to more reflections or to systems with more
steps, the iteration method misses more orbits, depending on
the value ofDw and the numerical tolerances, which makes
the second method more reliable and therefore better suited
for this work. Moreover, the second method is faster for our
systems of small genus numbers, but we assume that the
iteration procedure could be favorable in more complicated
systems, where the number of hypothetical orbits can be-
come very large.

Naturally, these numerical procedures are restricted to a
maximum orbit length, in our case to the first 3000 orbits
(for tests 12 000), including repetitions. This is legitimate as
the contributions of the diagonal elements in Eq.(3) decay
with ,3 (the contributions of nondiagonal elements can be
neglected, as will be shown in the next section), whereas the
number of orbits per length intervalD, increases only with
2,D, [see Eq.(4)]. With Hij staying finite, the alternating
sum of Eq.(3) is convergent.

First, we verify that our periodic orbits fulfill Eq.(4) and
investigate howb0 depends on the system details.b0 can
approximately be calculated from the sum rule[15]

Ss,d ; Ss,imax
d = 1/s2pdo

i

imax

ai/,i < b0,, s6d

which can be easily verified by replacing the sum by an
integral overd,, inserting the densitydNs,d /d, with Ns,d
from Eq. (4) and replacing the areasai by their mean value
kal. In Fig. 2, we plotSs,d versus, for the pseudointegrable
systems of Fig. 1 with different step sizes as well as for the
rectangular system.(For details of the systems, see Table I.).
In all cases,Ss,d increases linearly with the upper orbit
length , and b0 is determined from the slopes by a least-
squares fit. We can see thatb0 increases slightly with the
genus numberg and the step sizes.

Next, we calculate the average areakas,dl in phase space
for the periodic orbits with lengths smaller than,. In Fig. 3,
we plot the normalized average areakas,dl / s4Ad versus,. In
agreement with previous calculations[15,18], the values of
kas,dl are saturating for large values of, and are consider-
ably smaller than the value ofkas,dl<4A of integrable sys-
tems. Moreover, it can be seen that systems of the same
genus numberg form groups of similarkas,dl. This can be
most easily understood by comparing the neutral orbits of
Fig. 1(b): If we start with a rectangle and disturb it by one

salient corner, each neutral orbit will split into two different
families, each of them covering a smaller area than before.
The same effect also occurs for more complex orbits and is
repeated with each additional salient corner. So, the average
areakas,dl will be reduced withg, whereas the number of
different orbit families increases.

Now, we can calculate the proliferation rateNs,d for our
systems according to Eq.(4) by using the values ofb0 and
kas,dl from Figs. 2 and 3, respectively. In Fig. 4, we compare
the values from Eq.(4) (straight lines) to the numbers of
Ns,d, obtained by counting the different orbits(symbols).
The agreement between both curves is excellent. Clearly,
Ns,d increases much faster for higher values ofg than for
lower values(see above). Therefore, alsoNs,d forms groups
of very close-lying curves that correspond to systems with
the sameg. Like kas,dl, alsoNs,d is basically determined by
g and changes only very slightly by further details of the
considered systems.

III. THE DIAGONAL APPROXIMATION

As Eq.(3) involves a double sum over,i and, j, it is very
convenient to use the diagonal approximation, where only
terms with,i =, j are taken into account. It has been shown in
[12] that this is justified for integrable systems. The reason is
that only orbit pairs where,i −, j &1/ÎDE survive the aver-
age over an energy intervalDE, while for larger phase dif-
ferences, the different terms cancel by the oscillations of the
cosine function. WithNs,d,,2 and for not too smallDE, the
number of these pairs grows more slowly than their contri-
butions decrease and nondiagonal terms can therefore be ne-
glected[19].

As pseudointegrable systems obey the same kind of qua-
dratic proliferation rule as integrable systems[cf. Eq. (4)],

FIG. 2. Test of the sum rule[see Eq.(6)] for the geometries of
Fig. 1 with different values ofXi ,Yj. Ss,d is plotted versus, (giving
straight lines) and b0 is calculated from the slopes. The different
symbols refer to the rectangular system(triangular symbols) and to
pseudointegrable systems ofg=2 (circles) andg=3 (squares). Open
and closed symbols refer to different step sizes(for details of the
systems, see Table I). For the rectangle, we findb0= 1

4 and for the
pseudointegrable systems,b0 is slightly increasing withg and with
the step sizes.
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one can assume that the diagonal approximation should ap-
ply by the same reasons. However, by calculating the related
quantity

Fs,d =K 1

16p3o
i,j

aiaj

Î,i, j

cosfÎE0s,i − , jdgdS2, − ,i + , j

2
DL ,

s7d

doubts on the validity of the diagonal approximation have
been expressed[15], because due to the different proportion-
ality factors,Ns,d nevertheless increases faster than in inte-
grable systems. Deviations between the diagonal approxima-
tion and the full summation have been found in[15] by
investigating numerically the integral

Is,d =
1

2ÎE0kdl2E
0

,max

Fs,8dd,8

=K 1

32p3ÎE0kdl2 o
i,j

s,i+, jd/2,,
aiaj

Î,i, j

cosfÎE0s,i − , jdgL ,

s8d

where ,max=, / s4pÎE0kdld and the energy average runs
again over several values ofE0.

Here, we want to take a closer look at these deviations
and therefore investigateIs,d for our systems by calculating
expression(8) first in diagonal approximation and second by
carrying out the full sum. When some orbit lengths are de-

TABLE I. Table of the systems used in this work.Xi andYi are the lengths of the different segments of
the systems(also lengths of the “neutral orbits”) as shown in Fig. 1. The last columns indicate in which
figures the different systems occur, and the numbers given in these columns enumerate the curves from top
to bottom.

System Lengths Figure

X1 X2 X3 Y1 Y2 Y3 2 3 4 5 6 7

Rectangle 307 503 5 1 5 1–3 1 1

One-step 307 305 503 501 2

One-step 307 293 503 491 4 2

One-step 307 283 503 479 4 3 4 5

One-step 307 271 503 467 6 3

One-step 307 199 503 397 3 2 3

One-step 307 151 503 347 7 4

Two-step 307 305 303 503 501 499 2 4 2 3

Two-step 307 156 154 503 501 352 4–6 8 5

Two-step 307 206 104 503 401 300 1 5 1 9 6

FIG. 3. Normalized average areakas,dl in phase space for the
periodic orbits with lengths smaller than, for the same systems
(and same symbols) as in Fig. 2. It can be seen that systems of the
same genus numberg form groups of similarkas,dl. For large val-
ues of,, the areas are saturating.

FIG. 4. The proliferation rateNs,d is plotted versus, for five
different systems and two types of calculations. The lines are cal-
culated according to Eq.(4), using the values ofb0 andkas,dl from
Figs. 2 and 3, respectively. The symbols(same symbols as in Fig. 2)
show the numerical data, gained by a simple summation of the
different periodic orbits(including repetitions). Both curves agree
very well.
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generated, we includeall pairs of orbits with,i =, j into the
diagonal approximation. This is equivalent to combining or-
bits with ,i =, j to one single orbit family with areaai +aj.

The results are shown in Fig. 5. The upper three curves
show the rectangular system and the lower ones the two-step
system. Both systems are evaluated(i) in diagonal approxi-
mation (solid lines) and with the full sum and an average
over (ii ) 160 (dashed lines) and (iii ) 20 values ofE0 (dotted
lines), showing small and large fluctuations around the solid
line, respectively. The average is taken in the energy interval
[0.5, 1.5] with the mean valueE0=1.0. The results for the
one-step system, that are qualitatively the same, are omitted
for a better overview of the curves.

Contrary to[15], we do not find a crossover value for, in
pseudointegrable systems above which the diagonal approxi-
mation breaks down. Instead, we find fluctuations forIs,d
around the diagonal approximationIDs,d that depend on the
energy average and increase with,. They can become quite
large and seemingly distant fromIDs,d. However, these fluc-
tuations occur in both the integrable and the pseudointe-
grable systems and are significantly reduced by the average
procedure. Therefore, the diagonal approximation seems to
be valid for both kinds of systems, as long as the number of
different E0 values as well as their intervalDE is not too
small.

IV. SPECTRAL RIGIDITY

We finally investigate the spectral rigidityD3sLd. For in-
tegrable systems, it is known thatD3sLd shows linear behav-
ior for smallL (see Sec. I) and reaches a plateau for largeL,
the height of the plateau being determined by the smallest
periodic orbit of the system. We now use the periodic orbit
theory to findD3sLd for our pseudointegrable systems.

One may ask if the grouping ofkal andNs,d, observed in
Sec. II, also leads to an arrangement of theD3 curves accord-

ing to their genus numbers. This can be roughly estimated
from Eq. (3) by again investigating the neutral orbits. By
going from the rectangle to the one-step system, the neutral
orbit families split into two new ones. With a characteristic
step size of half the system size, one of the two new orbits
occupies half the areaa1 than before while the areaa2 occu-
pied by the other one is even smaller. Considering the length
of the new orbits as roughly constant(which is of course
only true for the first one), their common diagonal contribu-
tion to D3 is ~sa1

2+a2
2d, roughly half the contribution~s2a1d2

of the respective rectangular orbit. A similar discussion ap-
plies also for the more complicated orbits and for higher
genus numbers. Therefore,D3 of a rectangle should be
roughly diminished by a factor of 2 when introducing a step
of half the system sizesg=2d, and by a factor of 3 when
introducing two steps of equal sizesg=3d.

However, the situation is very different when the step size
is small compared to the system size. In this case, the con-
tribution a1 of the first new orbit is very close to the contri-
bution of the rectangular orbit, whereas the contributiona2
becomes negligible. Therefore, for small step sizes, the split-
ting of one orbit family into two new ones can be neglected
and we expectD3 curves very close to the one of the rectan-
gular system. In this case, theD3 curves should not be or-
dered according to their genus numbers.

We now want to investigate these assumptions by our
calculations. First,D3sLd is calculated by the diagonal ap-
proximation(open symbols) and by the full sum(solid sym-
bols) and is plotted in Fig. 6 versusL for the rectangular
system(squares) and for our systems withg=2 (circles) and
g=3 (triangles). The energy average was carried out over
160 values ofE0 in the energy interval[0.5, 1.5] with the
mean valueE0=1.0 and the number of orbits, taken into
account, is fixed to 3000 including repetitions. We carefully
checked that the inclusion of even more orbits does not
change the results of any of the considered systems signifi-
cantly. The results can be summarized as follows.

FIG. 5. Is,d for a rectangle(upper three curves) and a two-step
system(lower three curves) (for details of the systems, see Table I).
In both cases, the diagonal approximationIs,d is close to a straight
line (solid line), whereas the full sum oscillates around it(dotted
and dashed lines). The oscillations are significantly reduced by av-
eraging over more energy values. The sums are carried out over the
first 3000 orbits, including repetitions.

FIG. 6. D3sLd is calculated by the diagonal approximation(open
symbols) and by the full sum(solid symbols) and plotted vsL for
different systems of genus numberg=1 (squares), g=2 (circles),
andg=3 (triangles) (for details, see Table I). The theoretical behav-
ior for integrable and chaotic systems is indicated by the upper and
the lower lines, respectively(dotted lines without symbols).
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The calculatedD3sLd values for the rectangle are in quite
good agreement with the theoretical slope ofL /15 for small
L. Also in the pseudointegrable cases,D3sLd seems to in-
crease linearly for smallL and saturates for largerL, but the
slopes are smaller and decrease with increasing genus num-
bers, thereby coming closer to theD3 curve of the chaotic
systems(lowest curve). The agreement between the diagonal
approximation and the full sum is excellent. Next, we inves-
tigate the dependence ong. When the step sizes are roughly
equal in size, the curves of Fig. 6 show a systematic behavior
on g, with D3sLd decaying towards smaller values with in-
creasingg. The curves for the rectangle are highest and most
curves for theg=2 systems are above those withg=3. As
expected from the discussion above, a systematic depen-
dence ong occurs also for the lowest curves of each genus
number(refering to steps that split the system into parts of
roughly equal size). These curves lie roughly by a factor of 2
(for g=2) and of 3(for g=3) below the curves of the rect-
angle, which could be surprisingly well estimated by the be-
havior of the neutral orbits(see above). However, for very
small step sizes, this behavior changes and only slight devia-
tions ofD3 from the curve of the rectangle occur. This can be
seen on the upper three curves, which refer tog=1, 2, and 3,
but to very small step sizes, and it means that for giveng all
curves between theL /15 line and a minimum curve can be
found by changing the step sizes appropriately(the slope of
the minimum curve depending ong). Therefore, beside the
genus numberg, the details of the specific system play an
important role as well.

It is, however, interesting to note that with fixedg and
increasing step sizes, the curves decay quite rapidly towards
their minimum curve, and that for small steps sizes the
changes in size have the strongest effect. For the top four
curves of the one-step systems(circles), for example, the
step size was varied over 10% of the system size. The de-
crease in the slope is over 30%, and more than half of the
maximum decreases. The very large change in step size from
the fourth to the fifth curve, on the other hand, has a com-
paratively small effect. This is the reason that most of the
curves shown in Fig. 6 show indeed a systematic dependence
on g.

Another interesting quantity is the plateau value: For large
L, the values ofD3 saturate to a plateau, whose height is
determined by the small orbits. In order to estimate this
height, one normally uses the approximation[12]

D3sLd = 2kdl"E
0

` dt

t2
FstdGS Lt

2kdl"D s9d

with F from Eq. (7), t=, / s2E0d, and the so-called orbit se-
lection functionGsxd. Gsxd can roughly be approximated by
a step function which is equal to 1 in the plateau regime. For
integrable systems,fs,d=kdl / s2pd for ,.,min (where,min

is the length of the shortest orbit of the system) and fs,d
=0 for ,,,min, which makes the calculation ofD3 relatively
easy [12]. In the plateau regime, the integral(9) depends
only on the lower integration limit that is determined by the
length of the shortest orbit of the system.

For our pseudointegrable systems, things become more
complicated. We can findfs,d from the slope ofIs,d in Fig.
5 in the diagonal approximation, but the values differ for the
different systems. This means that the behavior of the plateau
depends on the length of the shortest orbit as well as on the
system-dependent value ofFs,d. As both quantities can be
varied independently from each other, there is no easy ex-
pression for the plateau value as in the case of the integrable
systems.

Finally, in Fig. 7, we compareD3
POsLd from the periodic

orbit results (open symbols, diagonal approximation) to
D3

e,LsLd from the eigenvalue statistics(filled symbols). To this
end, we have calculated the eigenvalues under Neumann
boundary conditions by the Lanczos algorithm(which in-
volves a discretization of the lattice) and obtainedD3

e,LsLd by
using the technique as derived in[20]. Our results are in line
with previous numerical calculations on the two-step system,
where the eigenvalues have been obtained for small values of
L by numerical diagonalization algorithms[5,15,18] and by
the boundary element method[6,7]. For the rectangle, also
the exact eigenvalues for a continuous system are used for
comparision. For the rectangle, theD3

e curve as obtained
from the exact eigenvalues(solid diamonds) agrees very well
with D3

PO from the periodic orbit theory. This had to be ex-
pected for a system without diffractive corners. TheD3

e,L

curve, obtained from the numerical eigenvalues of a dis-
cretized system, lies somewhat higher and the deviation
gives us the error bar arising from the discretization.

The results of several pseudointegrable systems ofg=2
andg=3 systems are shown in Fig. 7 as well. Also in these
cases, the agreement betweenD3

e,L and D3
PO is quite good.

Again,D3
e,L lies slightly aboveD3

PO, which can in principle be

FIG. 7. D3sLd from the periodic orbit theory in the diagonal
approximation(open symbols) is compared toD3 calculated from
the eigenvalues under Neumann boundary conditions obtained by
the Lanczos algorithm(solid symbols) for different systems. For the
rectangle,D3 as calculated from the exact eigenvalues for a con-
tinuous rectangluar system is shown as well(solid diamonds). Dif-
ferent symbols represent the genus numbersg=1 (squares), g=2
(circles), and g=3 (triangles). The theoretical behavior for inte-
grable and chaotic systems is indicated by the upper and the lower
line, respectively(dotted lines without symbols).
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due either to the discretization or to the neglect of higher-
order terms, as, e.g., the diffraction terms. The deviation
seems even smaller than for the rectangle. However, by cal-
culating rectangles of different sizes, we found that the de-
viations betweenD3

e,L andD3
PO are in most cases smaller than

the one shown here, which we therefore consider as the up-
per limit of the error due to discretization.

On the basis of the present data, it seems that the contri-
bution of the higher-order terms is quite small and at most in
the same order of magnitude as the errors due to discretiza-
tion. It is also interesting to note that the deviations do not
increase, when going fromg=2 to g=3, which doubles the
number of diffractive corners. This may also be a hint that
the diffraction terms are not very important in our systems,
where the diffraction terms are arising from the corner scat-
tering. The situation seems to be different in systems with
pointlike scatterers, where the spectral statistic is known to
be changed drastically[21]. It will be interesting to investi-
gate systems with higherg to see if this assumption holds.

V. SUMMARY AND CONCLUSIONS

In summary, we have calculated the spectral rigidity
D3sLd for various pseudointegrable systems by applying pe-
riodic orbit theory. By averaging over enough energy values
taken from a not too small interval, we found that the diag-
onal approximation is applicable. MostD3sLd curves de-
crease with increasing genus numberg, but other details of
the geometry play an important role as well. In particular,
when the salient corners are very small, all curves approach
the one of the rectangle, independently of their genus num-
bers.

The behavior of the differentD3sLd curves can be under-
stood in terms of the periodic orbit families. Estimating the
behavior of the orbits from the neutral orbits that bounce
between two parallel walls gives already a crude approxima-
tion of the lowest curves of a giveng that works surprisingly
well. This estimation also shows that the lowest curves occur
for systems with salient corners of roughly equal size. If the
corners of the systems are very small, on the other hand, the
opposite behavior occurs and theD3sLd curves lie very close
to the one for a rectangle. Also, this can be quite well under-
stood by looking at the periodic orbit families. The ones that
possess the same lengths as the rectangle occupy in this case
the dominant areas in phase space, while the orbit families
that differ from the ones of the rectangle become negligible.

Finally, we discuss which effects have been neglected and
could lead to deviations from our results. First, there are

various attempts in the literature to go beyond periodic orbit
theory, especially the attempt to take the influence of diffrac-
tive orbits into account. These orbits start at the singularities,
in our case at the salient corners, and their contributions to
spectral statistics have been treated in[22]. They are in gen-
eral non-negligible(except forL→0), but smaller than the
periodic orbit contributions. Second, there might be an effect
of the larger orbits beyond the first 3000 ones. However, as
we discussed in Sec. III, their influence should be negligible.
Indeed, the difference betweenD3 calculated by taking 3000
or 12 000 orbits(including repetitions) was hardly visible.

We can get hints about the importance of the diffractive
orbits by comparing theD3 curves obtained from the eigen-
values and the ones obtained from the periodic orbit calcu-
lations. As shown in the last section, the agreement between
both is quite good. Moreover, the difference between the
periodic orbit results and the eigenvalue results is roughly
the same in all considered systems, independently of number
and size of the salient corners. This indicates that the(small)
difference between both methods is rather due to the discreti-
zation of the eigenvalue calculations. Therefore, in agree-
ment with [15] we think that the influence of diffractive or-
bits to spectral statistics in our systems is only small. Of
course, it is possible that it increases when still more corners
and/or additional diffraction terms, arising, e.g., from flux
lines or pointlike scatterers, are present.

Moreover, it will also be very interesting to investigate the
connection between theD3 curves and the periodic orbits for
more complicated systems with higher genus numbers. Intro-
ducing more and more corners leads to more and more dif-
ferent orbit families with quite similar lengths, but rather
small areas in phase space. When many—even small—
corners are present, it is quite obvious that the original orbits
of the rectangle are considerably disturbed, i.e., that their
area in phase space becomes much smaller. Therefore, con-
trary to the relatively simple systems of this work, one
should expect a considerable change ofD3. Many numerical
works have shown that the curves are shifted towards the one
of chaotic systems, and it will be very interesting to compare
this shifting also to the periodic orbit theory of the respective
systems.
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