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We calculate numerically the periodic orbits of pseudointegrable systems of low genus ngrtitegrarise
from rectangular systems with one or two salient corners. From the periodic orbits, we calculate the spectral
rigidity As(L) using semiclassical guantum mechanics Witleaching up to quite large values. We find that the
diagonal approximation is applicable when averaging over a suitable energy interval. Comparing systems of
various shapes, we find that our results agree well witltalculated directly from the eigenvalues by spectral
statistics. Therefore, additional terms such as, e.qg., diffraction terms seem to be small in the case of the systems
investigated in this work. By reducing the size of the corners, the spectral statistics of our pseudointegrable
systems approaches that of an integrable system, whereas very large differences between integrable and
pseudointegrable systems occur when the salient corners are large. Both types of behavior can be well under-
stood by the properties of the periodic orbits in the system.
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I. INTRODUCTION B M n -1
The motion of a classical particle in a billiard system can g=1 +521 m 1)
1=

show regular, chaotic, or intermediate behavior, depending
on the billiard geometry. In a chaotic billiard, the motion is = . ) )
ergodically extended over the whole energy surface in phas¢hich is equal to the number of holes in the multihandled
space, and two particles whose trajectories are very close gpPhere in phase space. Helés the number of angles ard
the beginning diverge exponentially from each other. If theis the least common multiple of tirs. The reason why those
system is integrable, on the other hand, the motion of théystems are not completely integrable is their property of
billiard particle is restricted to a two-dimensional torus in beam splitting. At some points in their geometry, neighboring
phase space and neighboring trajectories diverge only lintrajectories of particles can be split into two opposite direc-
early from each other. Examples for chaotic billiards aretions. Figure 1 shows examples of pseudointegrable billiards
e.g., the Sinai or the stadium billiard, whereas rectangular owith genus numberg=2 and 3. The beam splitting property
circular billiards are integrable. Between these two limitingis demonstrated in Fig.(&) at one of the salient corners.
cases, there are several classes of intermediate systems. The first possibility to calculate the spectral statistics
A potential well of the same geometry as the correspondstarts with the eigenvalues. Here, one first looks at the dis-
ing classical billiard—a quantum billiard—reflects this regu- tribution P(s) of the normalized distancess =(gj.,
lar, chaotic, or intermediate behavior in the statistics and the-g;)/(s), (s)=1, between two consecutive energy levgls
dynamics of its eigenvalues. The statistics of the eigenvalues
investigates the static correlations of the eigenvalues and the
distribution of the distances between consecutive vallips

|—X2—4 ._KL.
It can be determined directly by calculating first the eigen- \
V4

I—X3—|

values and then their distribution and the correlations be-

tween them. It can also be determined at least approximately

by calculating the periodic orbits of the system and applying Y Y,

semiclassical quantum mechanics. Y, v,|V2
In this paper, we want to use the periodic orbit theory. We

focus on pseudointegrable systef@s4], which are an inter-

esting example of an intermediate class. As in integrable sys- (a')' —x— ) ——

tems, the motion of a classical particle in a pseudointegrable ! !

system is restricted to a two-dimensional surface in phase g 1. Shapes of the pseudointegrable systems considered in

space. However, these surfaces do not have the shapes of tgfis paperya) the one-step systefiX;, Y1; X5, Yo) with genus num-
but are more complicated objects with more than one hol@er g=2 and(b) the two-step systeniXy,Y;; Xz, Y2; X3, Ys) with
(“multihandled sphereg” Examples for pseudointegrable g=3. In (a), the beam splitting of two initially neighboring trajec-
systems are polygons with only rational angtes/m;, with  tories at a salient corner is demonstrated an¢bjntrajectories of
n;,m; e N and at least ong;> 1. They are classified by their three "neutral” orbitgbetween two parallel waljsare indicated by
genus number arrows. For the lengthX;,Y; considered in this paper, see Table I.
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and g; with the mean distancés), which has two limiting In this paper, we basically want to use KE8) to calculate
cases. When the systems are integrables) follows the  As(L) and see in which way the different system details apart
Poisson distribution, whereas tiseof chaotic systems are from the genus numbeg influence its behavior. It can be
Wigner-distributed. The distributiorP(s) of pseudointe- seen by Eq(3) that the number of orbits in the different
grable systems has been found to be intermediate betwedgngth intervalg¢,€+A¢] as well as the corresponding areas
both [5-1Q and it is assumed that with increasiggthey  a(€) are the important quantities to investigate this question.
come closer to the behavior of chaotic systems. However, itVe therefore carefully calculate these quantities for systems
is not yet clear in which way other system details interfere.with different lengths and width&x;, Y;) of the different seg-

As a measure for the correlations between the eigenvaiments(Fig. 1) and see how the behavior df; changes by
ues, we consider the spectral rigidifys(L) [11], which de-  varying the systems.
scribes the correlations in a normalized energy interval of The behavior for largé is determined by the short orbits,
lengthL. L gives the approximate number of energy levels inand we will sometimes use the neutral orbits for crude ap-
the considered interval and will in the following be called the proximations. By choosing the segmens— Xi,Y,—Y,,
argument ofA5;. We start from the integrated density of statesthe orbits approach the ones of a rectangular system, which
N(e)==N.,0(s-¢,) of the normalized“unfolded”) energy is integrable. For large differences betwe¢pand X, and
levels, which is a staircase and can be approximated by BetweenY; andY,, on the other hand, the orbit families can
straight line.A5(L) is defined as the least-squares deviation,become very different from those of the rectangle.

The paper is organized as follows. In Sec. II, we explain
. FotlL/2 2 how the lengths and areas of the periodic orbits are calcu-
Aq(L) = mlnrl'rZJ [N(e)=r1-reef'de ), (2)  |ated and show the results. In Sec. III, we discuss the appli-
cability of the diagonal approximation, where only terms of
where mip ;. means that the parametefsandr, are chosen ¢;=¢; are considered in Eq3). In Sec. 1V, we finally show
such that the line,+r.¢ is the best fit oiN(g). The average the periodic orbit results fods(L) for many different sys-
() is an energy average, carried out over many different valtems and compare them to the eigenvalue statistics. Some of
ues ofE, in an intervalAE. AE should not be confused with the considered systems are very close to |nt§grab|l|ty, while
the argument_, which gives the length of the considered other systems possess very pronounced salient corners and
energy interval. The limiting curves for not too largeare W& Show howAs(L) is influenced by these system details.
A4(L)=L/15 for integrable systems and(L)=In(L)/ 2 Finally, in the conclusion _Sec. V the influence of n_eglecte_d
-0.07/m2+0(L™Y) for the ensemble of Gaussian orthogonalt_erms such as, eg., the dlffractlon_ tgrms and p055|_ble_ deV|a_1-
matrices(GOE) [1,12], which serves as a generally acceptedt'ons betwee_n the eigenvalue statistics and the periodic orbit
good limit for chaotic systems. For pseudointegrable bil-"€Sults are discussed.
liards, A5(L) has been found intermediate between hste
above.

A second possibility to calculatAs(L) is given by the
periodic orbit theory. In pseudointegrable systems, all peri- |t has been shown ifil4,15 that for large¢, the prolif-
odic orbits form families of equal lengths and the startingeration rateN(¢), i.e., the number of orbits with lengths
point of an orbit can always be shifted to at least one direcsmaller thant, grows quadratically witH,
tion along the boundary without leaving the family. The sim-
plest and shortest orbit families are the “neutral orbjts3] N(€) = mhot?Ka(€)), (4)

that bounce betwgen two parallel walls. Using S‘?miCIas§iC3x,vhere<a(€)>:Ei v —i@lZ .1 is the average area in phase
guantum mechanics, settirig=2m=1, and neglecting addi- space, occupied by the orbits with lengths smaller than

tional contributions coming, e.g., from diffractive orbits, . : : :
AL) under Neumann boundary conditions is given byand by is a constant, depending slightly on the details of the

Eg-L/2

Il. CALCULATION OF THE PERIODIC ORBITS

[12,14-16 system,
=N a; — by =~ (1/27 - 0)alt;
A3(L) = <ﬁz _J_(eaiea)alzcoi\"EO(& - ej)]Hij>- (3) 0 (1 2 )2 5( |)a| i (5)
T i it

] ] ) L (the sum going over all periodic orbits including repetitipns
The double sum is carried out over all orbit famil@sclud- |1 has peen found thabo:% for integrable systems and

ing repetitions, but only in the forward directipof lengths slightly larger for pseudointegrable systems, whergé))
¢; and {;, a and a; are the areas in phase space that are

occupied by the respecting orbit families, and the functiorgsiﬁdlginggg;te)lesy?[/:te[]mﬂs and considerably smaller for
Hij=F(yi—y;)) —F(yDF(y) —3F' (y)F'(y;),  where F(y) '

" ' . - We have calculated the periodic orbits of our pseudointe-
=(siny)/y and primes denote differentiation. The argumenty e systems by two different methods. The first method

L enters viay;=(L{;)/ (4VEo(d)) with the mean level spacing ses the fact that one member of each orbit family must
1/{d)=4m/A and the system area As in Eq.(2), the aver-  gijther start at a salient corner or pass close to it. Therefore,
age( ) in Eq. (3) is carried out over different energi& in  we start at the salient corners and vary the reflection apgle
an energy interval of widtiAE. between the trajectory and the billiard wall in small stégs
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until the orbit nearly closes. Finally, we use an iteration 4500
method[17] to find the exact reflection angle The second 4000 |
method calculateg and the lengthd, of all hypothetical
orbits by [18] tan (pZZln,Y,/E]mJXJ ,€¢:2[(EiniYi)2
+(2;mX;)?]*2, wheren; and m; are positive integers and
X;,Y; are the segment lengths as shown in Fig. 1. In pseudo.__ 5% 1
integrable systems, due to the shielding role of the corners<= 200 |
not all hypothetical orbits really occur in each system. There-
fore, we have to check which trajectories actually return to
their starting point within the correct length, of the trajec- 1000 |
tory. Both methods basically lead to the same results. The 500 |
agreement, e.g., for the one-step system is larger then 979
for the orbits, being reflected at the boundaries up to 50
times. Going to more reflections or to systems with more  ®® o 2000 4000 6000 8000 10000 12000 14000
steps, the iteration method misses more orbits, depending o..

the value ofA¢ and the numerical tolerances, which makes )

the second method more reliable and therefore better suited F'C- 2 Test of the sum rulgsee Eq(6)] for the geometries of

for this work. Moreover, the second method is faster for our '9- 1 With different values ok;, Y;. S(€) is plotted versug (giving
systems of 'small genLjS numbers. but we assume that thc.éraight line$ and by is calculated from the slopes. The different
. . ' . . ymbols refer to the rectangular systémangular symbolsand to
Iter?tlon proﬁEduiﬁ could t?e fa;/c;]rablfhlnt_mtl)re g?tmplIcatscg?)seudointegrable systemsgt 2 (circley andg=3 (squares Open
izfnir?/z’rﬂa?;ee € number of hypothetical orbits can Be;,y ¢joseqd symbols refer to different step siges details of the

. . systems, see Tablg. I[For the rectangle, we fintioz%1 and for the
N_aturally, these num_encal procedures arle restricted t_o ﬁseudointegrable systents, is slightly increasing withg and with
maximum orbit length, in our case to the first 3000 orbitsy,o step sizes.
(for tests 12 00§ including repetitions. This is legitimate as
the contributions of the diagonal elements in E8). decay . L . .
with €2 (the contributions of nondiagonal elements can befsalle_:lnt cornerr], e?fr? neutral O.rb't will Splll't into twt(;] dlﬁgrefnt
neglected, as will be shown in the next secjjomhereas the amilies, each of them covering a smailer area than betore.

number of orbits per length interval¢ increases only with The same effect also occurs for more complex orbits and is

: ) P . repeated with each additional salient corner. So, the average
gﬁ#goﬁgg é;*f;‘?&:gg?g;‘:t staying finite, the alternating area(a(¢)) will be reduced withg, whereas the number of

First, we verify that our periodic orbits fulfill Eq4) and  different orbit families increases.

3000 |

1500 |

investigate howb, depends on the system details, can Now, we can.calculate the pro!iferation rti¢¢) for our
approximately be calculated from the sum r{dé] systems according to E¢4) by using the values df, and
(a(€)) from Figs. 2 and 3, respectively. In Fig. 4, we compare
imax the values from Eq(4) (straight line$ to the numbers of
SO =8¢ )= 1/(2m) Y, alt; =~ byt (6) N(¢), obtained by counting the different orbitsymbols.
I

The agreement between both curves is excellent. Clearly,
N(¢) increases much faster for higher valuesgofthan for
lower valuegsee above Therefore, alsdN(¢) forms groups

of very close-lying curves that correspond to systems with
the samay. Like (a(f)), alsoN(¢) is basically determined by
and changes only very slightly by further details of the
onsidered systems.

which can be easily verified by replacing the sum by an
integral overd{, inserting the densitgN(¢)/d¢ with N(€)
from Eq. (4) and replacing the areas by their mean value
(a). In Fig. 2, we plotS(¢) versust for the pseudointegrable
systems of Fig. 1 with different step sizes as well as for thegcJ
rectangular systengFor details of the systems, see Table I.
In all cases,S(¢) increases linearly with the upper orbit Ill. THE DIAGONAL APPROXIMATION
length ¢ and b, is determined from the slopes by a least-
squares fit. We can see thiag increases slightly with the
genus numbeg and the step sizes.

Next, we calculate the average ake&f)) in phase space

As Eq.(3) involves a double sum ovéf and{}, it is very
convenient to use the diagonal approximation, where only
terms with¢;=¢; are taken into account. It has been shown in

o } ) i [12] that this is justified for integrable systems. The reason is
for the periodic orbits with lengths smaller thénin Fig. 3, that only orbit pairs wherd;—¢; < 1/VAE survive the aver-

we plot the normalized average ar@at))/ (4A) versust. In o460 gver an energy intervalE, while for larger phase dif-
agreement with previous calculatiofis5,18, the values of  ferences;, the different terms cancel by the oscillations of the
(a({)) are saturating for large values 6fanq are consider-  gsine function. WithN(¢) ~ €2 and for not too smalAE, the
ably smaller than the value ¢&({))~4A of integrable sys- pymber of these pairs grows more slowly than their contri-

tems. Moreover, it can be seen that systems of the samsutions decrease and nondiagonal terms can therefore be ne-
genus numbeg form groups of similaka(€)). This can be  glected[19].

most easily understood by comparing the neutral orbits of As pseudointegrable systems obey the same kind of qua-
Fig. 1(b): If we start with a rectangle and disturb it by one dratic proliferation rule as integrable systefie$. Eq. (4)],
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TABLE |. Table of the systems used in this wotk. andY; are the lengths of the different segments of
the systemgalso lengths of the “neutral orbits’as shown in Fig. 1. The last columns indicate in which
figures the different systems occur, and the numbers given in these columns enumerate the curves from top

to bottom.
System Lengths Figure
X4 X, X3 Y, Y, Y3 2 3 4 5 6 7
Rectangle 307 503 5 1 5 1-3 1 1
One-step 307 305 503 501 2
One-step 307 293 503 491 4 2
One-step 307 283 503 479 4 3 4 5
One-step 307 271 503 467 6 3
One-step 307 199 503 397 3 2 3
One-step 307 151 503 347 7 4
Two-step 307 305 303 503 501 g9 2 4 2 3
Two-step 307 156 154 503 501 352 4-6 8 5
Two-step 307 206 104 503 401 @0 1 5 1 9 6
one can assume that the diagonal approximation should ap- Cmax o
ply by the same reasons. However, by calculating the related ! (£) = NS a7 d(€')de
quantity VEo 0
1 (G+epI2<t aa
- i =N
= —=Cog VEy(£; - ¢)] /,
D(6) =( ——52 —=CogVEy({; - €)]o| ———] ), ’ tl

()

where €,.,=¢/(4mEx(d)) and the energy average runs
again over several values Bf,.

doubts on the validity of the diagonal approximation have Here, we want to take a closer look at these deviations
been expressdd 5], because due to the different proportion- and therefore investigatét) for our systems by calculating
ality factors,N(€) nevertheless increases faster than in inte-expression(8) first in diagonal approximation and second by
grable systems. Deviations between the diagonal approximaarrying out the full sum. When some orbit lengths are de-
tion and the full summation have been found [itB] by

investigating numerically the integral 3000

1 T T T 2500
0s | l 2000
g 1500
06 | E Z
%3 1000
04 B
W 500
02| i
0
o . . .
0 5000 10000 15000 20000 . . . .
¢ FIG. 4. The proliferation raté&(¢) is plotted versud for five

different systems and two types of calculations. The lines are cal-
FIG. 3. Normalized average arga(f)) in phase space for the culated according to Eq@4), using the values df, and(a(¢)) from
periodic orbits with lengths smaller thathfor the same systems Figs. 2 and 3, respectively. The symb@ame symbols as in Fig) 2
(and same symbolsss in Fig. 2. It can be seen that systems of theshow the numerical data, gained by a simple summation of the
same genus numberform groups of similaka(¢)). For large val-  different periodic orbitgincluding repetitions Both curves agree
ues of¢, the areas are saturating. very well.
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FIG. 5. I(€) for a rectanglgupper three curvesand a two-step FIG. 6. A5(L) is calculated by the diagonal approximati@pen

system(lower three curves(for details of the systems, see Table | symbolg and by the full sunsolid symbol3 and plotted vd_ for
In both cases, the diagonal approximatléf) is close to a straight different systems of genus numbge1 (squarey g=2 (circles),
line (solid line), whereas the full sum oscillates arounddbtted  andg=3 (triangleg (for details, see Table.I The theoretical behav-
and dashed lingsThe oscillations are significantly reduced by av- jor for integrable and chaotic systems is indicated by the upper and
eraging over more energy values. The sums are carried out over thRe lower lines, respectiveldotted lines without symbo)s
first 3000 orbits, including repetitions.

ing to their genus numbers. This can be roughly estimated

from Eq. (3) by again investigating the neutral orbits. By
going from the rectangle to the one-step system, the neutral
orbit families split into two new ones. With a characteristic

generated, we includall pairs of orbits with¢;=¢; into the
diagonal approximation. This is equivalent to combining or-

bits with £;=¢; to one smglg or_b|t family with areg; +3;. step size of half the system size, one of the two new orbits

The results are shown in Fig. 5. The upper three CUIVe3ccupies half the ares than before while the ares, occu-
show the rectangular system and the lower ones the two-St§fied by the other one is even smaller. Considering the length
system. Both systems are evaluatédin diagonal approxi-  of the new orbits as roughly constagwhich is of course
mation (solid lineg and with the full sum and an average iy true for the first ong their common diagonal contribu-
over (i) 160 (dashed linesand(iii) 20 values ofg, (dotted  jon to A4 is «(a3+a3), roughly half the contributior(2a,)?

lines), showing small and large fluctuations around the solidyt the respective rectangular orbit. A similar discussion ap-
line, respeqtlvely. The average is taken in the energy interv lies also for the more complicated orbits and for higher
[0.5, 1.3 with the mean valuée=1.0. The results for the  gons numbers. Thereforéy; of a rectangle should be

one-step system, that are qualitatively the same, are Om'tt%ughly diminished by a factor of 2 when introducing a step

for a better overview of the curves. _ of half the system sizég=2), and by a factor of 3 when
Contrary to[15], we do not find a crossover value f6in introducing two steps of equal sizg=3)

psegdointegrable systems above WhiCh the diagonal approX= yowever, the situation is very different when the step size
matlor:j bhreadk_s dowln. Inste:?ld, Wd? féndhflucdtuatlogs If(cﬁr)h is small compared to the system size. In this case, the con-
around the diagona gpproxmatl p(¢) that depend on t_e tribution a; of the first new orbit is very close to the contri-
energy average and increase withThey can become quite , ion of the rectangular orbit, whereas the contributign
large and seemingly distant frofp(¢). However, these fluc-  po.omes negligible. Therefore, for small step sizes, the split-

tuations occur in both the integrable and the pseudointeﬂng of one orbit family into two new ones can be neglected

grable systems and are significantly reduced by the averagg,q we expect; curves very close to the one of the rectan-
procegiure. Theref_ore, the diagonal approximation seems 1g,,|5r system. In this case, the curves should not be or-
be valid for both kinds of systems, as long as the number ofjgeq according to their genus numbers.

different E, values as well as their intervalE is not too We now want to investigate these assumptions by our
small. calculations. FirstAs(L) is calculated by the diagonal ap-
IV. SPECTRAL RIGIDITY proximation(open symbolsand by the full suntsolid sym-

bols) and is plotted in Fig. 6 versuk for the rectangular

We finally investigate the spectral rigiditys(L). For in-  system(squaresand for our systems witg=2 (circles and
tegrable systems, it is known thag(L) shows linear behav- g=3 (triangley. The energy average was carried out over
ior for smallL (see Sec.)land reaches a plateau for laige 160 values ofE, in the energy interval0.5, 1.5 with the
the height of the plateau being determined by the smalleshean valueE,=1.0 and the number of orbits, taken into
periodic orbit of the system. We now use the periodic orbitaccount, is fixed to 3000 including repetitions. We carefully
theory to findAs(L) for our pseudointegrable systems. checked that the inclusion of even more orbits does not

One may ask if the grouping @&) andN(¢), observed in  change the results of any of the considered systems signifi-
Sec. Il, also leads to an arrangement of yecurves accord-  cantly. The results can be summarized as follows.
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The calculated\4(L) values for the rectangle are in quite 2
good agreement with the theoretical slopeLél5 for small
L. Also in the pseudointegrable caseg(L) seems to in- of
crease linearly for small and saturates for largér, but the
slopes are smaller and decrease with increasing genus nun s}
bers, thereby coming closer to tig curve of the chaotic
systemglowest curve. The agreement between the diagonal = 6l
approximation and the full sum is excellent. Next, we inves- <
tigate the dependence gnWhen the step sizes are roughly
equal in size, the curves of Fig. 6 show a systematic behaviol
on g, with A;(L) decaying towards smaller values with in-
creasingy. The curves for the rectangle are highest and most
curves for theg=2 systems are above those wik3. As
expected from the discussion above, a systematic depen °
dence ong occurs also for the lowest curves of each genus
number(refering to steps that split the system into parts of
roughly equal size These curves lie roughly by a factor of 2 FIG. 7. A(L) from the periodic orbit theory in the diagonal
(for g=2) and of 3(for g=3) below the curves of the rect- approximation(open symbolsis compared ta\; calculated from
angle, which could be surprisingly well estimated by the bethe eigenvalues qnder Neumann bounQary conditions obtained by
havior of the neutral orbitésee above However, for very the Lanczos algorithrsolid symbol$ for dn‘fere_nt systems. For the
small step sizes, this behavior changes and only slight deviggctangle.As as calculated from the exact eigenvalues for a con-
tions of A5 from the curve of the rectangle occur. This can belinuous rectangiuar system is shown as wetlid diamonds Dif-
seen on the upper three curves, which refegtd, 2, and 3, fe.rem symbols represent the genus ”“mt@ﬁ‘i (squareg g=2
but to very small step sizes, and it means that for giyel (circles, and g:3 (trlangles)._ T_he_theoretlcal behavior for inte-
curves between the/15 line and a minimum curve can be grable and c_haotlc syste_ms is |_nd|cated by the upper and the lower
found by changing the step sizes appropriatéhe slope of line, respectivelydotted lines without symbols
the minimum curve depending ay). Therefore, beside the . )
genus numbeg, the details of the specific system play an FOr our pseudointegrable systems, things become more
important role as well. complicated. We can fing(¢) from the slope of(¢) in Fig.

It is, however, interesting to note that with fixedand 5_in the diagonal app_roximation, but the valu_es differ for the
increasing step sizes, the curves decay quite rapidly towardfferent systems. This means that the behavior of the plateau
their minimum curve, and that for small steps sizes thedeépends on the length of the shortest orbit as well as on the
changes in size have the strongest effect. For the top fouystem-dependent value éf(¢). As both quantities can be
curves of the one-step systerfircles, for example, the Vvaried independently from each other, there is no easy ex-
step size was varied over 10% of the system size. The ddression for the plateau value as in the case of the integrable
crease in the slope is over 30%, and more than half of theystems.
maximum decreases. The very large change in step size from Finally, in Fig. 7, we compara5(L) from the periodic
the fourth to the fifth curve, on the other hand, has a comorbit results (open symbols, diagonal approximatjoto
paratively small effect. This is the reason that most of theA$"(L) from the eigenvalue statisti¢glied symbolg. To this
curves shown in Fig. 6 show indeed a systematic dependen@id, we have calculated the eigenvalues under Neumann
ong. boundary conditions by the Lanczos algorithmhich in-

Another interesting quantity is the plateau value: For largevolves a discretization of the lattipand obtained\$*-(L) by
L, the values ofA; saturate to a plateau, whose height isusing the technique as derived[20]. Our results are in line
determined by the small orbits. In order to estimate thiswith previous numerical calculations on the two-step system,

T
-5-B-u-8-u-0
y SR
7 _.-I‘.' &=

- &5

2}

50 100 150 200 250 300 350 400 450

height, one normally uses the approximat|dz] where the eigenvalues have been obtained for small values of
L by numerical diagonalization algorithn{is,15,18 and by
© dt Lt the boundary element methd@,7]. For the rectangle, also
As(L) = 2<d>ﬁf tjcb(t)G(m) (9)  the exact eigenvalues for a continuous system are used for
0

comparision. For the rectangle, th& curve as obtained
from the exact eigenvaluésolid diamondsagrees very well
with @ from Eq.(7), t=£€/(2Ey), and the so-called orbit se- jth AZC from the periodic orbit theory. This had to be ex-
lection functionG(x). G(x) can roughly be approximated by pected for a system without diffractive corners. Thg"

a step function which is equal to 1 in the plateau regime. Foturve, obtained from the numerical eigenvalues of a dis-
integrable systemsp(¢)=(d)/(2m) for €> €, (Where{,  cretized system, lies somewhat higher and the deviation
is the length of the shortest orbit of the sysjeamd ¢(¢€) gives us the error bar arising from the discretization.

=0 for £ <{,n, Wwhich makes the calculation af; relatively The results of several pseudointegrable systemg=ct
easy[12]. In the plateau regime, the integréd) depends andg=3 systems are shown in Fig. 7 as well. Also in these
only on the lower integration limit that is determined by the cases, the agreement betwa&@L and Ago is quite good.
length of the shortest orbit of the system. Again,Ag"' lies slightly aboveAL®, which can in principle be
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due either to the discretization or to the neglect of highervarious attempts in the literature to go beyond periodic orbit
order terms, as, e.g., the diffraction terms. The deviatiortheory, especially the attempt to take the influence of diffrac-
seems even smaller than for the rectangle. However, by cative orbits into account. These orbits start at the singularities,
culating rectangles of different sizes, we found that the dein our case at the salient corners, and their contributions to
viations betweemg'L andAgo are in most cases smaller than spectral statistics have been treated2g]. They are in gen-
the one shown here, which we therefore consider as the ugral non-negligiblelexcept forL — 0), but smaller than the
per limit of the error due to discretization. periodic orbit contributions. Second, there might be an effect
On the basis of the present data, it seems that the contréf the larger orbits beyond the first 3000 ones. However, as
bution of the higher-order terms is quite small and at most inve discussed in Sec. lll, their influence should be negligible.
the same order of magnitude as the errors due to discretizérdeed, the difference betweén calculated by taking 3000
tion. It is also interesting to note that the deviations do notor 12 000 orbitgincluding repetitionswas hardly visible.
increase, when going from=2 to g=3, which doubles the We can get hints about the importance of the diffractive
number of diffractive corners. This may also be a hint thatorbits by comparing thé; curves obtained from the eigen-
the diffraction terms are not very important in our systemsyalues and the ones obtained from the periodic orbit calcu-
where the diffraction terms are arising from the corner scatfations. As shown in the last section, the agreement between
tering. The situation seems to be different in systems witthoth is quite good. Moreover, the difference between the
pointlike scatterers, where the spectral statistic is known tgeriodic orbit results and the eigenvalue results is roughly
be changed drasticallj21]. It will be interesting to investi- the same in all considered systems, independently of number
gate systems with highey to see if this assumption holds. and size of the salient corners. This indicates tha(sheall)
difference between both methods is rather due to the discreti-
V. SUMMARY AND CONCLUSIONS zation of the eigenvalue calculations. Therefore, in agree-
In summary, we have calculated the spectral rigidityment with[15] we think that the influence of diffractive or-
A4(L) for various pseudointegrable systems by applying pebits to spectral statistics in our systems is only small. Of
riodic orbit theory. By averaging over enough energy value$ourse, it is possible that it increases when still more corners
taken from a not too small interval, we found that the diag-and/or additional diffraction terms, arising, e.g., from flux
onal approximation is applicable. Mos¥s(L) curves de- lines or pointlike scatterers, are present. _
crease with increasing genus numigeibut other details of ~ Moreover, it will also be very interesting to investigate the
the geometry play an important role as well. In particular,connection between the; curves and the periodic orbits for
when the salient corners are very small, all curves approachiore complicated systems with higher genus numbers. Intro-
the one of the rectangle, independently of their genus numducing more and more corners leads to more and more dif-
bers. ferent orbit families with quite similar lengths, but rather
The behavior of the differenks(L) curves can be under- Small areas in phase space. When many—even small—
stood in terms of the periodic orbit families. Estimating the COrNers are present, it is quite obvious that the original orbits
behavior of the orbits from the neutral orbits that bounce®f the rectangle are considerably disturbed, i.e., that their
between two parallel walls gives already a crude approxima@re@ in phase space becomes much smaller. Therefore, con-
tion of the lowest curves of a giventhat works surprisingly ~trary to the relatively simple systems of this work, one
well. This estimation also shows that the lowest curves occufnould expect a considerable change\gf Many numerical
for systems with salient corners of roughly equal size. If theOrks have shown that the curves are shifted towards the one

corners of the systems are very small, on the other hand, tHf chaotic systems, and it will be very interesting to compare
opposite behavior occurs and the(L) curves lie very close this shifting also to the periodic orbit theory of the respective

to the one for a rectangle. Also, this can be quite well underSYStems.

stood by looking at the periodic orbit families. The ones that

possess the same lengths as the rectangle occupy in this case ACKNOWLEDGMENTS
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